Water use by whitebark pine and subalpine fir: potential consequences of fire exclusion in the northern Rocky Mountains.
نویسندگان
چکیده
In subalpine forests of the northern Rocky Mountains, fire exclusion has contributed to large-scale shifts from early-successional whitebark pine (Pinus albicaulis Engelm.) to late-successional subalpine fir (Abies lasiocarpa (Hook.) Nutt.), a species assumed to be more shade tolerant than whitebark pine and with leaf to sapwood area ratios (A(L):A(S)) over twice as high. Potential consequences of high A(L):A(S) for subalpine fir include reduced light availability and, if hydraulic sufficiency is maintained, increased whole-tree water use. We measured instantaneous gas exchange, carbon isotope ratios and sap flow of whitebark pine and subalpine fir trees of different sizes in the Sapphire Mountains of western Montana to determine: (1) whether species-specific differences in gas exchange are related to their assumed relative shade tolerance and (2) how differences in A(L):A(S) affect leaf- and whole-tree water use. Whitebark pine exhibited higher photosynthetic rates (A = 10.9 micromol x m(-2) x s(-1) +/- 1.1 SE), transpiration rates (E = 3.8 mmol x m(-2) x s(-1) +/- 0.7 SE), stomatal conductance (g(s) = 166.4 mmol x m(-2) x s(-1) +/- 5.3 SE) and carbon isotope ratios (delta13C = -25.5 per thousand +/- 0.2 SE) than subalpine fir (A = 5.7 micromol x m(-2) x s(-1) +/- 0.9 SE; E = 1.4 mmol x m(-2) x s(-1) +/- 0.3 SE; g(s) = 63.4 mmol x m(-2) x s(-1) +/- 1.2 SE, delta13C = -26.2 per thousand +/- 0.2 SE; P < 0.01 in all cases). Because subalpine fir had lower leaf-area-based sap flow than whitebark pine (QL = 0.33 kgx m(-2) x day(-1) +/- 0.03 SE and 0.76 kg x m(-2) x day(-1) +/- 0.06 SE, respectively; P < 0.001), the higher A(L):A(S) in subalpine fir did not result in direct proportional increases in whole-tree water use, although large subalpine firs used more water than large whitebark pines. The linear relationships between tree size and daily water use (r2 = 0.94 and 0.97 for whitebark pine and subalpine fir, respectively) developed at the Sapphire Mountains site were applied to trees of known size classes measured in 12 natural subalpine stands in the Bob Marshall Wilderness Complex (western Montana) ranging from 67 to 458 years old. Results indicated that the potential for subalpine forests to lose water by transpiration increases as succession proceeds and subalpine fir recruits into whitebark pine stands.
منابع مشابه
Using Landscape Genetics Simulations for Planting Blister Rust Resistant Whitebark Pine in the US Northern Rocky Mountains
Recent population declines to the high elevation western North America foundation species whitebark pine, have been driven by the synergistic effects of the invasive blister rust pathogen, mountain pine beetle (MPB), fire exclusion, and climate change. This has led to consideration for listing whitebark pine (WBP) as a threatened or endangered species under the Endangered Species Act, which has...
متن کاملDrought induces lagged tree mortality in a subalpine forest in the Rocky Mountains
Extreme climatic events are key factors in initiating gradual or sudden changes in forest ecosystems through the promotion of severe, tree-killing disturbances such as fire, blowdown, and widespread insect outbreaks. In contrast to these climatically-incited disturbances, little is known about the more direct effect of drought on tree mortality, especially in high-elevation forests. Therefore p...
متن کاملInvasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem.
Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's Nutcracker (Nucifraga columbiana) for ...
متن کاملThe future of subalpine forests in the Southern Rocky Mountains: Trajectories for Pinus aristata genetic lineages
Like many other high elevation alpine tree species, Rocky Mountain bristlecone pine (Pinus aristata Engelm.) may be particularly vulnerable to climate change. To evaluate its potential vulnerability to shifts in climate, we defined the suitable climate space for each of four genetic lineages of bristlecone pine and for other subalpine tree species in close proximity to bristlecone pine forests....
متن کاملSeparating Trends in Whitebark Pine Radial Growth Related to Climate and Mountain Pine Beetle Outbreaks in the Northern Rocky Mountains, USA
Drought and mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks have affected millions of hectares of high-elevation conifer forests in the Northern Rocky Mountains during the past century. Little research has examined the distinction between mountain pine beetle outbreaks and climatic influence on radial growth in endangered whitebark pine (Pinus albicaulis Engelm.) ecosystems. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 21 11 شماره
صفحات -
تاریخ انتشار 2001